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BAYESIAN COMPUTATIONS IN SURVIVAL MODELS VIA THE GIBBS SAMPLER

LYNN KUO, ADRIAN F. M. SMITH,
Department of Statistics, Department of Mathematics,
University of Connecticut, Imperial College London,
U. S. A United Kingdom.

ABSTRACT. Survival models used in biomedical and reliability contexts
typically involve data censoring, and may also involve constraints in
the form of ordered parameters. In addition, inferential interest
often focuses on non-linear functions of natural model parameters.
From a Bayesian statistical analysis perspective, these features
combine to create difficult computational problems by seeming to
require (multi-dimensional) numerical h:xtegrals over awkwardly defined
regions. This paper illustrates how these apparent difficulties can be
overcome, in both parametric’ and non-parametric settings, by the Gibbs
sampler approach to Bayesian computation.

1. Introduction

For the Bayeslian statistical analysis of other than simple stylized
models, the key tool for calculation is (multi-dimensional) numerical
integration; see, for example, Smith et al (1987) for a review of
available techniques. However, it 1is widely recognized that
considerable numerical sophistication is typically required in applying
these techniques, and that this has thus far hampered the development
of routinely available, user-friendly, Bayesian computational methods.

This is particularly true in the case of survival models used in
biomedical and reliability contexts. Here, features such as data
censoring, ordered parameters, assumed convexity or concavity of dis-
tributions, all conspire to produce complicatedly constrained regilons
over which numerical integrations are required. Not surprisingly, the
literature therefore contains very few Iinstances of fully Bayesian
analyses in survival contexts (i.e., presenting full and accurate
posterior summaries, rather than, say modal point estimates or second
derivative uncertainty measures).

Recently, however, Gelfand et al (1991) have shown that the Gibbs
sampler approach to Bayesian computation (see, for example, Gelfand and
Smith, 1990, and Gelfand et al, 1990) effectively side-steps the




seeming problems of awkwardly defined integration regions in truncated
data and constrained parameter problenms, and provides an easlily
implemented computational procedure.

Our purpose in this paper is to 1illustrate the simplicity and scope of
the Gibbs sampler for the routine Bayesian analysis of survival data,
In both parametric and non-parametric settings. In Section 2, we
briefly review the Gibbs sampler and its general structure for
constrained parameter and censored data problems. In Section 3, we
provide a range of 1llustrations of how the methodology proceeds for a
variety of parametric models wused in varjous survival modelling
contexts. In Section 4, we give a non-parametric illustration of the
methodology.

2. The Gibbs Sampler, Constraints and Censoring
2.1 THE GIBBS SAMPLER

In what follows, densitles will be denoted generically by square
brackets, so that |Joint, conditional and marginal forms for
random variables U, V appear, respectively, as (U, V], [U|V] and {V].
Marginalization by integration is denoted by [U] = [{U|V]-[V]. Given a
collection of random variable§ with Joint density (Ul. UZ' 'Uk]’ we

shall refer to [USIUr. res], s=1, 2,...,k, as the full conditional
densities.
The Gibbs sampler is a simply described iterative stochastic simulation

scheme, whereby samples drawn from the full conditional densities are
used to provide summaries of aspects of the Jjoint density. Given an

arbitrary set of starting values, U?.. ...U?(. a random varlate U; is

drawn from [U1|Ug,... .U‘o(], then a variate U; is drawn from lelull.
1 1 1

Ug,...,U?(], and so on until U, is drawn from [Uk|Ul,...,UK_1]. This

completes one iteration of the sampler and results in a generated
vector (ui,....u}‘). Repeating this process, after { {iterations we
arrive at a generated vector (U:,....Ui). It can be shown that, under

mild regularity conditions (see, for example, Gema. and GCeman, 1984),
as i+o this random vector tends in distribution to a random vector

having the joint distribution [Ui. e 'Uk]'

One posslible procedure for obtaining summaries of aspects of
wi""’"k] of interest is therefore the following. Run M independent
parallel replications of the above sampling procedure, so that, for i




Judged to be sufficiently large, the resulting generated vectors

(U;J.....Uij) , J=1,2,...,M , can be regarded as an iid sample of

size M from [Ul....,Ukl. Standard moment, quantile or density
estimation techniques can then be employed to estimate summary features
of interest.

In the Bayesian inference context, wl""Uk] is the Jjoint posterior

density of unknown model parameters Ul""'uk’ Univariate marginal
inference summaries for Us. say, are simply obtained from
(U;I....,U;H). Generally, if marginal inference summaries are required
for a specified function of ‘"1'-“'":(" an lid sample of size M from
the corresponding marginal density is immediately avallable on substi-
i 1

‘”11'-'-'"”" J 1,2,...,M, into the
functional form. Exploration of bivariate (or higher dimensjional)
marginal summaries proceeds in an obvious manner. For further detall,
and comments on the pragmatics of choices of i and M, see Gelfand and
Smith (1980, 1991), Gelfand et al (1990, 1991).

tuting the generated vectors

The Gibbs sampler thus provides a simulation-based alternative to
direct numerical integration methods, and one which depends only on our
capacity to generate random variates (reasonably efficiently) from the
full conditional densities, [us|ur, res}. We shall now look at this

latter issue in the context of constrained parameter and censored data
problems. Our discussion here will be kept to the minimum necessary to
give the reader an appreciation of how the Gibbs sampler achieves
crucial simplification. For a much more complete discussion, see
Gelfand et al, (1981).

2.2 MODELS WITH CONSTRAINED PARAMETERS

Suppose a parametric model for data Y involves a k-dimensional
parameter vector 6, constrained to lie in a subset Sk of Rk. For
simplicity of exposition, we shall assume here that Sk does not depend
on Y (as would be the case, for example, if some components of € were
truncation parameters: see Gelfand et al, 1991). Suppose further that
[Y|e], [6] denote the (unconstrained) forms of likelihood and prior, so

that the (constrained) Joint posterior for @ = (91,“”9‘() is given by
oyl = [y|e] (o]  gook R
I (YIQ]'[O] B Slon )
Sk e - A\<ﬁL Stidty "oﬁes

Diat \
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Proceeding by direct numerical integration, we see that there is an
immediate problem in calculating the normalizing constant and subse-
quent problems in performing (k-1)-dimensional integrals (over subsets

of S‘k ) to obtain marginal density forms.

However, consider now the full conditional forms required for the Gibbs
sampler. If SJ;(G p J#1) denotes the cross-section of Sk corresponding
to the constraints on 6, imposed by S‘k for specified values of 0, j=i,

i J
we have

(o ¥, 6, o1l « [¥|ol-lo] . eesi(e, Jei)

Moreover, the constraints region for 6., will typically be an interval,

i
or a union of intervals.

It follows that the typical random variate generation task required for
the Gibbs sampler In this case, will simply be that of generating from
specified univariate density shapes truncated to intervals. This is a
relatively straightforward task: In any case, strikingly easier than
high-dimensional numerical integration over complicated constraint
volumes. o

2.3 CENSORED DATA PROBLEMS

Suppose a parametric model for data Y = (Yl,...,Yn) involves a
k-dimensional parameter vector 6, with likelihood defined by
[Yje] = “[YIIB]
i
However, suppose that for j 2z m > 1 there exist V , W such that,

JJ
instead of observing Yj exactly, we simply observe that Y, € (V, W.),

J JJ
so that the likelihood is actually given by

W
1 n J
motyjer . wo | LY jle)
i=1 pm v

(We are here assuming a simple, fully specified censoring process for
convenience of exposition. For a more general discussion, see Gelfand
et al, 1991).

In this case, a moment’s reflection reveals that the full conditional
forms implied by the above likelithood combined with a prior [6] are
not, in general, easy forms to sample from. In particular, the




integral terms may have no closed-form analytic expressions, so that
standard envelope rejection or ratio-of-uniforms sampling techniques
are not readily applicable.

However, suppose we consider Y’ = (Yn,....Yn) as additional unknowns,

so that the unknown model parameters are (6, Y’), with the data given

by (Y*, v, V), where Y* = (Yl.....Yn_l). V= (vn""’vn) and VW =

(Vm....,lln)‘ Consider now the full conditionals required for the Gibbs

sampler:

L ] ’
lo,lv*, v, W, 8, jei, Y1 , 1=1,....k ,

Yy |Y*, Vv, W, 8, Y, s2r, szml , r=m,...,n
r s

Careful examination of the conditioning variables reveals that the full

conditionals for 91. cees Bk reduce to

le;|Y, 6, j#il , i=1,....,k ,

jl

the forms that would have obtained in the uncensored case! Typically,
these forms present no difficulty for random variate generation.

For the full conditionals for Yn" .. 'Yn' examination of the forms
reveals that these reduce to
I"r
[y lel / I (y.le) ., r=m....n ;
Vr

namely, the sampling distributions for the Yr restricted to the ranges
(v L W J)' Again, these typically present no difficulty for random

variate generation.

The trick of treating censored observations as unknowns in combination
with the Gibbs sampler leads to simple Bayesian calculation strategies
in otherwise intractable problems (see, also, Tanner and Wong, 1987,
for a related manifestation of the idea). In the next section, we
illustrate this concretely by detalling the forms of the Gibbs sampler
arising in a range of parametric models used in various kinds of
survival studles.




3. Illustrations For Parametric Survival Models
3.1 ORDERED BINOMIAL PARAMETERS

Consider conditionally independent observations Y i Binomlal (n It

61). I =1,2,...,k , where it is known that 91592 s...S ek and we
seek to make Inferences about the @ i (or functions, thereof, such as
6,,,79; or (9“1-01) / 61). Problems of this kind arise, for example,
in reliability development testing (Smith, 19877; Fard and Dietrich,
1887), where stages 1,...,k correspond to successive improvements in
reliability.

If the joint prior density is taken to be proportional to

k
a B
i-1 i-1
91 (1 91) ,
i=1

1

over the simplex, Sk = ((91,....9k) : 0= 91 s 92 < ..s ek = 1}, by

conjugacy the Jjoint posterior [B]Y] has the same form, with support Sk .
but with «,, B, replaced by a. + Y,, B, + n, — Y_, respectively.

i i i S M | i i
Implementation of the Gibbs sampler is now seen to be very simple. The
full conditionals are given by

(oY, @, jeil = Beta (ap Y, By+m-Y) . i=1,... .k ,

i

restricted to the interval 91_1 < 61 s 91‘_1 (90 = 0,

random variate generation is straightforward.
3.2 CENSORED REGRESSION DATA

Schmee and Hahn (1979) modelled log-failure times of motorettes tested
at four different temperatures by =a straight-line regression of
log-fallure versus transformed temperature. Censoring occurred
whenever a motorette had not fajled at the end of the test period. The

uncensored case likelihood [Y|e] is assumed to derive from YU = q +
2
BXI + eU, where EU ~ NO, o), 1=1,...,k, | = 1,....n1. but the
actual data, Z, are given by
YIJ YU s lv'j
ZU = if
W Y,.> W, ,




where Ui is the total test time at temperature corresponding to X i

To implement the Gibbs sampler, as indicated in Section 2.3, we include
the unobserved Y,, (i.e., those where Y,, > VI) as further unknowns in

ij ij
the model, in addition to the basic parameters of interest, a,8 and 0'2.
Given conjugate normal prior forms for «,8 and an inverse-gamma prior
for crz. it is easily verified that the full conditional forms for «a,B

and 02 are straightforwardly identified conjugate forms (normal, normal
and inverse-gamma, respectively) obtained as if all the Y ij were
precisely observed. The full conditjonals for the unobserved Y ij are
simply N{a + ij, ¢r2). restricted to the range ij > Vl.. Again, random

variate generation from all these full conditionals is unproblematic.
3.3 TRUNCATED BIVARIATE NORMAL DATA

Consider a bivariate normal process (Xi. Yj). i= 1,...,n, where some of
the Yl are not observed. One context in which such data arises is in

paired survival time studies (using observed logarithms of survival
times), where observation (Yi)' of the second of the paired patients is

terminated when the first of the pair dies, so that Yi is observed only
if Y sX.
i i

More precisely, we assume iid pairs (Xi, Yi) such that for i = 1,...,n,

We observe the pairs (XI’ ZI) with ZI = YI if YI

observe (Xi. *), where 21 = * indicates that YI > XI. Suppose that the

prior for (91, 92) is taken to be bivariate normal with mean (ul. "2)

s XI; otherwise we

and covariance matrix V, and that the prior for the covariance matrix,

Z, say Is taken to be an inverse-Wishart, so that [2-1] = W ((pR)-l.
p}, with all the hyperparameters Hys Mo V, p and R known.

1’ 92 and Z, but,
following Section 2.3, unobserved values of YI are also treated as

unknowns in specifying the Gibbs sampler. Defining TI = (XI. Yl)’ T =

Interest focuses on marginal inferences for 6




—_ -1 _ _
(Tl""'Tn)' T=n (T1 +..+ Tn). 0= (91. 82) and g = (ul. “2)’ it is
easily verified that

(6T, 2, 1 = Mv(n g+ N ' T+ nlz e vip, (2t + v HY

(£71|7, 2, 6] = W{(X(T, ~ e)(T, - 6," + pR) ', n + p}
i

and

_ 2,y _ 2 2
(y,1x,, Z,. 0, Il = Mo, + 0,,0.°(X; - 8,), ¢

1271 (X; = 8). oy - o0

truncated to (Xj, w) if Zl. = *  with YI

The required random variate generation is routine.

degenerate at Z i otherwise.

3.4 WEIBULL PROPORTIONAL HAZARDS WITH CENSORING

Consider a survival time model in which the hazard function A(t; 2Z),
for an individual with covariate values Z at time t,is given by

Alt; ) = ptP ! exp(zg)

where B = (Bo. 81.....Bp)‘ is a vector of unknown regression parameters
and p > 0 is the unknown Weibull shape parameter.
If tl" .,tn are explicitly observed survival times and tml""’tm are
censored (T > t)} lifetimes, with Z J denoting covariate values for the
Jjth case, the likelihood is given by

n p-1 ZJB nm zf

H pt e I-I exp[ -tp e ]

J J

J=1 J=1

Clearly, whatever the prior specification, the resulting

(p + 2)-dimensional posterior is awkward to handle using standard
numerical integration procedures.

However, it is easily verified that the second partial derivatives of

the log-likelihood with respect tn each of the p + 2 unknown parameters
are all non-positive (see Dellaportas and Smith, 1991). If the prior
density is chosen to be log-concave, it follows that all the posterior
full conditionals are log-concave. The import of this observation |is
that highly efficient methods exist for random variate generation from
log-concave densities (see, in particular, Gilks and Wild, 1981), so




that routine, straightforward Bayesian calculation for widely used
cases of proportional hazards models is possible (see Dellaportas and
Smith, 1891, for wider exploitation of log-concavity).

4. A Nonparametric Illustration
4.1 INTRODUCTION

Nonparametric Bayeslan inference for the survival function with right
censored data has been studied by Susarla and Van Ryzin (1376), and
Ferguson and Phadia (1879). However, we often encounter the situation
where some observations are censored from the left and some
observations are censored from the right (see Turnbull, 1974, for
references to papers addressing doubly censored data sets from a
frequentist perspective).

In this section, we study a nonparametric Bayesian approach to such
problems, which allows us to incorporate prior beliefs and frees us
from making a restrictive (parametric) model assumption for the
survival function. Specifically, we assume that the distribution
function F of survival times has a prior given by .‘erguson’s (1973)

Dirichlet process, D(a). The measure a can be written as NF,, where F,

is the prior mean of F and Fo('l -Fo) / (N + 1) is the prior variance of
F. The larger N, the more strongly the prior specifies that F concen-

trates around FO .

In the doubly censored data case, it is very difficult to obtain an
explicit expression for non-parametric Bayesian estimators even in the
form of the posterior mean. We shall show, however, that the Gibbs
sampler approach, which augments the data by using latent variables
that decompose the number of the censored observation into the possible
numbers of observations falling Iinto each interval, provides a
straightforwardly computed numerical solution. As illustrated in
Section 2.3, this augmentation facilitates the specification of
appropriate full conditional densities, particularly here for the
survival functions given the latent varlahles. The {iterated sampling
scheme then allows us to approximate the posterior distribution of the
survival function.

4.2 THE MODEL

We shall 1illustrate the approach using a model similar to that studied
by Turnbull (1974), who proposed a self-consistent algorithm for
computing the generalized maximum likelihood estimators. Here, we add
the Dirichlet process prior to the model.

Let T1. 7‘2....,Tn denote the true survival times of n individuals that




could be observed precisely if no censoring were present. The T i are

independent and identically distributed with distribution F; that |is,
F(t) = P(T s t) for t 2 0. We consider the case that not all TI are

observed precisely. For each i, we assume that there are "windows" of

observations VI and UI (VI s Uj) that are either fixed constants or

random variables independent of the {T 1). We observe

Xj = max [ nin(TI. VI)’ VI]

Moreover, for each item, we also know whether it is left-censored with

X i = Vi’ or right-censored with X ;= VI, or a precisely observed time

with X, =T,
i i

We assume that items (or patients) are examined at discrete times (for
example, monthly) and that there is a natural discrete time scale 0 <
t1 < t2 <..., tm. with observed deaths classified into one of the m
intervals (O, tll’(tl' t2]....(tm_1. tm]. Let 61 denote the number of
precise observations (=) in the perlod (t -1 t I]' M, denote the number
of left-censored (s) entries at age ti' and 7«1. denote the number of
It is assumed that the left-censored

]. The data can

right-censored (>) entries at t i
entries H; all occur at the end of age period (ti' t

then be summarized by the following tabulation:

i+1

Type of obs. \ age (O, t1] (t1, t2] e (tm-l’ tm]

(=) 61 62

(=) My My e My

(>) Al Az Am
Let PJ = P( tj) = 1 - F( tj) denote the survival function evaluated at
t 7 so that the likelihood function is proportional to

ﬁ (P g “i P

- P 1 - P
17 Fy Pp = By

J=1

Let OJ = Pj—1 - P_j for J =1,...,n and let eml = Pm' The prior

process specifies that the distribution of the 6's is the Dirichlet
distribution




m+1 o -1
xe) = ¢ || 0pd
J=1

where

for j=1,...,m+ 1, with Fo(tml) =1, and

L(N)

H’"‘l
=1 F(aj)
e, em+1) is known to be

The posterior distribution of € = (91, 92,.... -

a mixture of Dirichlet distributions (see Antoniak, 1974). In the next
section, we show how the Gibbs sampler side-steps the need for direct
computation of this mixture.

C =

4.3 APPROXIMATION VIA THE GIBBS SAMPLER

To employ the Gibbs sa.mpler,' we use the Iidea of Section 2.3 and
introduce latent varjables that decompose the numbers of censored
entries into the numbers of observations belonging to individual

intervals. Let ZU, sz.....zjj denote the random variables that count
the number of observations in p ] that might fall in the intervals (O,

t, 1. (¢, t2]....,(tj_1, tJ]. respectively, so that Hy o= 2-1’=1 Zlf
Further, let Z g Zm+1 J denote the number of observations in A J
that might fall in the intervals (tj. tj+1]' cees (tm—l‘ tm] , (tm,eo] ,

respectively, so that Aj = ):‘MI ZU.
1= j+1

Our objective is to summarize, via samples generated form the Gibbs
sampler, the posterior distribution of 6 given the data. The posterior
full conditional for @ given the Z's and the data, is easily seen to be
an up-dated Dirichlet distribution depending only on the Z's. The
posterior full conditional for the Z's given 6 and the data, is easily
seen to be a product of multinomial distributlons. Thus, suppose at
the ith iteration step of the Gibbs sampler, we have the realization

ol = (eI, 61.....61 ), with ):Ml 6l = 1. e then up-date the 2
1 2 m+1 1=1 1

variables from the multinomial distributions as follows. For each

Jo J=1,...,m we sample Z“1 Z“1 from the multinomjal distribu-

L A ¥




1 i i 1

tion with sample size “j and parameters rlj""’rjj where rlj = 91
i 1 1 i+1

/ Z‘Ll 6, for 1 =1,...,j. Sinilarly, we sample Z o1y 'zn+1j' from

the multinomial distribution with sample size A J and parameters

i 1 = af 1 1

Fierg e Pt j where r! 91/}_‘" 6, for I = j+1,....m+ 1

1 I=j+1
Having sampled the Z random variables, we then generate new @
variables from the Dirichlet distribution as follows. We compute, for
each 1, 1 =1,...,m+ 1,

1 +1
Yl = al + 61 + ‘;1 ij ’
and then sample (91 1,....9:"1, e;‘:i) from the Dirichlet distribution
1+1 i+l
with parameters (Y ...le).

By running M parallel independent replications of the sampler, after

i i i i
the ith {teration, we have els,’ 925""'em1.s' and Y ""'le,s’ for
s = 1,..,M. The posterior distribution of 8, for 1 =1,...,m + 1 can

1
then be approximated (for sufficiently large i) by

. M
F(8,|data) = M ) Beta(Y Z Y :
s=1

where Beta(a,b) denotes the beta density with parameters a and b. A
posterior estimate of the @6 1 is then given by

I

s)=:1 i‘"‘l

1=1

D

Other posterior summaries can be computed similarly from the replicated
samples, i and M having been selected to achieve “convergence" to
"smooth" estimates.

4.4 A NUMERICAL EXAMPLE

To 1illustrate the Gibbs sampler technique, we shall reanalyze the data
set given by Kaplan and Meier (1958). The data consist of deaths
occurring at .8, 3.1, 5.4 and 9.2 months and losses occurring at 1.0,
2.7, 7.0 and 12.1 months. For comparison purposes, we consider the
same prior specifications used by Susarla and Van Ryzin (1876) in their




Bayesian reanalysis of the data. That iIs, Fg(t) = 1 - e® with ¢ =
.12 and N = 4,8, and 16.

To apply the Gibbs sampler approach, we divide the positive real 1line
into the following intervals: (0, .8 ], (.8 , .8}, (.8, 1], (1, 2.7},

(2.7, 3.171, (3.1, 3.1], (3.1, 5.4}, (5.4~, 5.41, (5.4, 7],
(7, 8.27), (8.27, 8.2}, (9.2, 12.1], and (12.1, »). We label these
intervals by (O, t1]. (t1, tzl,....(tlz. t13], and let 81. 92...., and

913. respectively, denote the probabilities assigned to the intervals.

The likelihood of @ is proportional to

L(e) = 629698911(64 + 95 ...+ 913) X
(95 oo+ 913)(910 L 2 913)913
SIS 4T
Let a = N(e - e ), so that the prior distribution of 0 is
13 'al-l
n(@) = C H 8, ,
1=1

where C is the normalizing constant.

Note that 92. 96' 98' 6“ and 613 in the llkelihood combine simply with

the corresponding 6 variables in the prior distribution, so that the
parameters 62. 96' 98’ 911 and 613 are each up-dated by 1 in the

posterior distribution. Therefore, we need only Iintroduce three 2
variables for the incomplete data, namely, Z.= (Z Z..,.... 2 ),

1 41’ T51° 13,1
Z, = (2 Z ), and 23 = (Z 4

2 520 Zg2r 043,22 10,3' %11,3° %12,3° %3.3)- Ve

then sample Z, for f = 1, 2, and 3, from the appropriate multinomial
distribution with sample size 1 and rescaled probabilities.

To estimate the survival function at t I we accumulate the 0, for 1 >

1
J. For t between t J and t je1° an interpolation formula that connects

the survival function at the two end points according to the prior
shape can be used. Tables 1 and 2 exhibit the Gibbs sampler results

for the survival function evaluated at tj with ¥ = 1000 and N = 4000,

both with i = 10. The exact Bayes solutions given by Susarla and Van
Ryzin are also listed for comparison. The tables show that the Gibbs
sampler results for M = 1000 are already very accurate in approxima-




ting the exact Bayes rules. Similar results hold for N = 16. For
further illustration of the Gibbs sampler methodology, see Kuo (1881),
who reanalyses data from Turnbull (1974).

Table 1: Gibbs Approximation to the Bayes Estimates for N = 4

Statistics \ age(t) .8 .8 1 2.7 3.1 3.1
fvt with M = 1000 .970 .886 .879 .819 .B805 .702
Et with M = 4000 .970 .886 .879 .819 .805 .701
Exact Bayes .970 .886 .879 .819 .805 .701
Statistics \ age(t) 5.4 5.4 7 9.2" 9.2 12.1
Et with M = 1000 .632 .529 .491 .437 .305 .253
Et with ¥ = 4000 ‘. .632 .529 .491 .438 .307 .256
Exact Bayes .632 .528 .490 .438 .306 .255

Table 2: Gibbs Approximation to the Bayes Estimates for N = 8

Statistics \ age(t) .8- .8 1 2.7 3.1 3.1
Et with ¥ = 1000 .954 .892 .881 .792 .773 .698
Et with M = 4000 .954 .892 .881 .792 .773 .700
Exact Bayes .954 .892 .881 .793 .773 .698
Statistics \ age(t) 5.4 5.4 7 .2 8.2 12.1
Et with N = 1000 .600 .527 .474 .405 .316 .249
Ft with M = 4000 .602 .528 .474 .405 .318 .250

Exact Bayes .602 .528 .474 .405 .318 .250
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